Meeting of the Princeton ACS Section:“1D Lepidocrocite Titania-based Nanomaterials, Their Diverse Morphologies and Exceptional Properties”
Frick Chemistry Laboratory, Taylor Auditorium, Princeton UniversityMeeting of the Princeton ACS Section Tuesday, March 12, 2024 Professor Michel. W. Barsoum Drexel University, Philadelphia, PA “1D Lepidocrocite Titania-based Nanomaterials, Their Diverse Morphologies and Exceptional Properties” Frick Chemistry Laboratory, Taylor Auditorium, Princeton University Mixer (in Atrium) 6:30 pm; Lecture 7:00 pm Abstract: Recently, we converted 15 binary and ternary titanium carbides, nitrides, borides, phosphides, and silicides into lepidocrocite-based, one dimensional, 1D, sub-nanometer nanofilaments, NFs, ≈ 5x7 Å in cross-section by reacting them with a tetramethylammonium hydroxide, TMAH, aqueous solution at ≈ 85 °C range for tens of hours. In some cases, the conversion is 100 % precluding the need for centrifuges, filters, etc. We currently routinely make 100 g batches in a lab setting. Depending on with what and the order the reaction products are washed, the 1D NFs self-assemble into loose, spaghetti-shaped fibers, ≈ 30 nm in diameter, fully inorganic TiO2 gels, pseudo 2D or porous mesoscopic particles. In all cases, the fundamental building block is 1D lepidocrocite NFs, ≈ 3 nm long, that self-assemble into the aforementioned morphologies. At this time, we believe that our materials are the only thermodynamically stable 1D NFs in water, with important implications in photo- and chemical catalysis. The production